A New Face Iterator for Polyhedra and for More General Finite Locally Branched Lattices
نویسندگان
چکیده
Abstract We discuss a new memory-efficient depth-first algorithm and its implementation that iterates over all elements of finite locally branched lattice. This can be applied to face lattices polyhedra various generalizations such as polyhedral complexes subdivisions manifolds, extended tight spans closed sets matroids. Its practical is very fast compared state-of-the-art implementations previously considered algorithms. Based on recent work Bruns, García-Sánchez, O’Neill, Wilburne, we apply this prove Wilf’s conjecture for numerical semigroups multiplicity 19 by iterating through the faces Kunz cone identifying possible bad then checking these do not yield counterexamples conjecture.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولpassivity in waiting for godot and endgame: a psychoanalytic reading
this study intends to investigate samuel beckett’s waiting for godot and endgame under the lacanian psychoanalysis. it begins by explaining the most important concepts of lacanian psychoanalysis. the beckettian characters are studied regarding their state of unconscious, and not the state of consciousness as is common in most beckett studies. according to lacan, language plays the sole role in ...
FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملlocally modular lattices and locally distributive lattices
A locally modular (resp. locally distributive) lattice is a lattice with a congruence relation and each of whose equivalence class has sufficiently many elements and is a modular (resp. distributive) sublattice. Both the lattice of all closed subspaces of a locally convex space and the lattice of projections of a locally finite von Neumann algebra are locally modular. The lattice of all /^-topo...
متن کاملfuzzy ordered sets and duality for finite fuzzy distributive lattices
the starting point of this paper is given by priestley’s papers, where a theory of representation of distributive lattices is presented. the purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. in this way, some results of priestley’s papers are extended. in the main theorem, we show that the category of finite fuzzy priestley space...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Computational Geometry
سال: 2022
ISSN: ['1432-0444', '0179-5376']
DOI: https://doi.org/10.1007/s00454-021-00344-x